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Abstract 

We have developed an experimental method based on the visibility fac- 
tor of the light-scattering minima to obtain size-polydispersity information 
from contaminants on a flat substrate. We verify the method using double- 
interaction-model calculations and use this technique to experimentally ex- 
amine the radial variation of a micrometer-sized fiber and the size polydis- 
persity of spherical particles on a substrate. 
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1.    Introduction 

The detection and characterization of particles on flat surfaces has been a 
topic of increasing interest over the last several years because of its wide ap- 
plicability in many fields of science and technology [1,2]. In general, partic- 
ulate samples may contain contaminants of different size and shape. Here, 
we use the far-field light scattered from contaminated substrates to char- 
acterize the size polydispersity of the contaminants. From visibility meas- 
urements of the minima of the 5-polarized scattered light, we can obtain 
an estimate of the upper limit of the size polydispersity. To our knowledge 
this is the first time that polydispersity has been measured by this means. 
We verify the method experimentally using two fundamentally different 
samples: a substrate contaminated by a polydispersion of spheres and a 
cylinder lying on a substrate. 



2.    Solution and Results 

We consider spherical or cylindrical contaminants having small size poly- 
dispersity in radius R. This kind of sample can be characterized by a prob- 
ability density function (PDF) p(R) with mean value R0 and degree of size 
polydispersity r defined as the ratio between the square root of the vari- 
ance a and R0. We assume a low density of contaminants and little or no 
aggregation, such that the interaction between individual contaminants is 
negligible. The total scattered intensity received at scattering angle 6S is ob- 
tained by 

/•oo 

(I(R,e8))= /    I(R,e8)p(R,Ro,r) dR , (1) 
JO 

where I(R,8S) is the scattered intensity at angle 6S by a contaminant of 
radius R illuminated at normal incidence. The scattering angle 6S is meas- 
ured from the normal to the substrate. 

Analysis of equation (1) requires information about the scattering intensi- 
ties I(R. 6S). For normal-incidence illumination, we empirically find that 
the scattered intensities can be approximated by 

I(R,0s) = A (l-cos  k~fR(es-^)  | (2) 

where A is a normalization factor, k = 2n/X, and 7 is a fitting parameter. 
For the samples we analyzed (gold-coated spheres and cylinders on gold 
substrates), 7 = 3.3 produces adequate results. Figure 1 shows how this 
expression reproduces the main characteristics (lobed structure and angu- 
lar positions of minima) of the ^-polarized far-field scattering pattern from 
a cylinder on a plane substrate. We obtain experimental results using the 
technique described by Gonzalez et al [3]. Theoretical results are calculated 
with a modified version [4-6] of the Nahm-Wolfe double interaction model 
[7], which displays the same general features obtained by other more accu- 
rate techniques [8-10]. 

It is highly desirable to choose a PDF that is both analytical and real- 
istic. The gamma function is considered valid for both high- and low- 
polydispersity regimes [11]: 

,„N ,„     amRm~l exp(-a-R) ,„ 
P(R)dR = —-P J-dR , 3 

1 (m 



Figure 1. Experimental 
(circles), double- 
interaction model [5] 
(line), and empirical 
approximation (dashed) 
S-polarized 
light-scattering intensity 
from a cylinder (R/X = 
0.87) on a substrate (both 
gold coated: e = -11 + 1.5i) 
illuminated at normal 
incidence. 
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where the parameters a and m are defined as a = R0a~2 and m = r"2. 
Substituting the expressions of equations (2) and (3) allows equation (1) to 
be integrated, providing an analytical approximation for {I (R, 6S)): 

(i(R,e8))^A- 
A cos jp- arctan [r2k^R0 (0S - §)] } 

{l+[fc7Ä0r2(ös-f)]2}1/2r2 
(4) 

The above expression approximates the scattered intensities from substrates 
contaminated by polydispersities of spheres or cylinders. This study fo- 
cuses on samples having small size polydispersities, i.e., r is smaller than 
approximately 0.1 (10 percent). For contaminant sizes on the order of the 
wavelength, the cosine argument may be approximated by k^Ro(0s - §), 
and the angular frequency of the scattered intensity is now approximately 
proportional to the mean value R0: 

(i(es))*A- 
Acos[k-fR0(es-^)} 

{l+[k7R0r
2(es-%)}2}1/2r2 

(5) 

The denominator in equation (5) is slowly varying, so the angular positions 
of the minima and maxima are nearly independent of the degree of polydis- 
persity r. Figure 2 (a) shows the scattered intensities predicted by equation 
(5), and figure 2 (b) shows those predicted by the use of a modified version 
of the double-interaction model [5,6] for a polydisperse sample of mean 
relative value R0/X = 2.53 (R0 = 1.6 ^m; A = 0.6328 fim); r = 3, 6, and 9 
percent. Parameter A is chosen as unity. The order m of the lobes is num- 
bered from m = 0, corresponding to the maximum/minimum observed 
nearest the grazing angles. Higher values of m correspond to the succes- 
sive lobes observed at scattering angles toward the specular direction. 



Figure 2. (a) Empirical and 
(b) double-interaction 
model predictions of a 
light-scattering intensities 
from low size polydisperse 
spherical particles on a 
substrate illuminated at 
normal incidence. The 
mean relative value is 
Ro/X = 2.53 and the 
angular resolution is 1°. 
Mean relative value is 
R0/X = 2.53 and angular 
resolution is 1°. Dots line: 
monodisperse sample; 
continuous line: r = 3 
percent; dashed line: r = 6 
percent. 
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Samples with different degrees of polydispersity have been analyzed the- 
oretically and similar behavior has been found in all cases. As the sample 
becomes more polydisperse, a smoothing of the lobed structure occurs (fig. 
2), i.e., the minima become more shallow. The difference between the max- 
imum and minimum intensities is very sensitive to changes in the degree 
of polydispersity r. The amount of smoothing also depends on the angular 
positions of the minima. Those minima of highest order, closest to specular, 
disappear most rapidly We can quantify this connection between a feature 
in the light-scattering pattern and a characteristic parameter of the poly- 
dispersity using the visibility factor V(m), defined for each lobe of order m 
as 

{I(6f^,R0.,r))- (I(e?h\R0,r)) 
V(m) = 

miax 

Jmax (/ {6fax, Ro, r)> + (1(9f^, R0, r)) 
(6) 



where 9fax and 8fm are the angular positions corresponding to the maxi- 
mum and the minimum intensities of the lobe of order m. If a parameter ßs 

is defined as 

!% = <! + 

then from equation (6) we obtain 

7T  i     2 

kjRo {^-^)r 
l2' -l/2r2 

(7) 

^min omax   I   an 

K(m) «     p'     "*"p'    .    . (8) 
\       ' O    i     /Qma.v /3mm      ' v    ' 2 + p™* - ßt 

mm 
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where the superscripts refer to a minimum or maximum. Note that for par- 
ticles with relative size well above the wavelength, the angular positions of 
a minimum approach that of their corresponding maximum (/?"iax ~ ßfm)> 
resulting in the simple expression V(m) « ß™m- This equation also holds 
quite well for smaller size particles, i.e., particles whose sizes are on the or- 
der of the wavelength. In a previous work [4-6], an expression was devel- 
oped relating the particle size to the angular positions of the mth minima: 

cv (TU) 
a—-Jj-i with a(m) « 0.292 + 0.316m. (9) 

2R0 

We can now approximate the visibility factor by 

V{m) « #nm « h + [27T7a (m) r2j   \ . (10) 

For each r, the visibility decreases as the order increases, independent of 
R0. This means that, although different samples with the same polydisper- 
sity r produce quite different light-scattering patterns, minima of the same 
order m have the same visibility. 

We now compare the predictions of V{m) and experimental data obtained 
from two fundamentally different samples. The first sample consists of a 
dilute set of spherical latex particles seeded on a flat substrate and metal- 
ized by means of a gold-sputtering process [3]. The nominal radius of the 
spheres before coating is R = 1.594 ± 0.027 ^m (r = 1.7 percent). The sec- 
ond sample consists of a single fiber of nominal radius R ss 0.55 (im, placed 
on a substrate and metalized in the same way. The fiber is not uniform, but 
has a secondary ripple that is approximately sinusoidal and causes the ra- 
dius to vary by a few percent over millimeter-size length scales. We meas- 
ured the .S-polarized scattering intensities using the apparatus and tech- 
nique described by Gonzalez et al [3]. From these intensities, we can de- 
termine the visibility of the minima. The illumination area on the sample 



containing the cylinder is larger than the length scale of the ripple structure 
on the sample. 

Figure 3 shows the evolution of the visibility factor V{m) predicted by 
equation (10). Superimposed on this plot are measured visibilities for the 
sample of spheres on a substrate and for the fiber on a substrate. Depending 
on the mean size of the contaminants, the number of minima change and 
only that number of points are available for comparison with theory. We ex- 
pect the experimentally measured visibilities to follow one of the trajecto- 
ries, and this occurs for the substrate containing the cylinder. The trajectory, 
followed by the points for the cylinder, corresponds to a size polydispersity 
of approximately r = 4 percent, which is in agreement with estimates made 
by the manufacturers. 

For the polydispersion of spheres on the substrate, the experimentally meas- 
ured visibilities do not follow any of the trajectories. The reason for this is 
that size polydispersity is not the only cause for the loss of visibility. Shape 
polydispersity, microirregularities on the substrate, high surface densities, 
and the presence of particle clusters all contribute to a loss of visibility. The 
existence of some of these effects in the sample can significantly alter the 
visibility of some minima, even the angular minima positions themselves 
[13-15]. Photomicrographs of similar samples [3,12] show such clustering 
and other microcontaminants that can cause a loss of visibility. Because the 
sample containing the fiber consists of only one primary scattering parti- 
cle, some of the effects we mentioned above are not present, and the exper- 
imental evolution of V(m) displays better agreement with the analytical 
predictions for the existing orders (m = 0,1). 

Figure 3. Evolution of 
V(m) for some values of r 
(expressed as percentage) 
by means of equation (10). 
Circles correspond to 
measurable points. 
Experimental visibilities 
for a substrate with 
spherical particles 
(triangles) and a substrate 
with a fiber (squares) are 
shown. Arrows show 
minimum value of r by 
any order for a given 
sample (see text). 
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3.    Conclusion 

More analysis is necessary for the sample of spheres on a substrate. It is 
known that high-visibility minima are more sensitive than low-visibility 
minima. The experimental points on the V(r) curves corresponding to the 
lowest values of r (those farthest to the right on the graph) are the minima 
whose visibility is least affected by these other factors. Therefore, the poly- 
dispersity corresponding to these minima more closely agrees with the ac- 
tual polydispersity. The polydispersity constitutes an upper-limit estimate 
of the maximum size polydispersity of the sample. For the spheres, the lobe 
of order m = 5 has a visibility of V(r) = 0.50, corresponding to a size poly- 
dispersity of about 7=3 percent. This estimate agrees, as an upper limit, 
with the initial value of the nominal radius of the sample (r w 1.7 percent). 
Four different spots in the sample have been measured, yielding similar 
results. 
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